Կրթական ծրագիր՝
Ինֆորմատիկա և կիրառական մաթեմատիկա
Կրթական մակարդակը՝
Բակալավր
Ծրագրի ուստարին՝
2023/2024
Ուսուցման ձևը՝
Առկա
Կրեդիտ՝
6
Թվանիշ՝
0105/B29
4-րդ կիսամյակ
4 ժամ/շաբ.
30/30/0
Եզրափակիչ գնահատումով դասընթաց
Դասընթացի ընդհանուր նկարագիր
Ուսանողներին ծանոթացնել կոմպլեքս անալիզի հիմնական գաղափարներին՝ անալիտիկ և հարմոնիկ ֆունկցիաներին և նրանց հատկություններին, Կոշիի ինտեգրալային բանաձևին և ինտեգրալային թեորեմին, Լորանի շարքին և մեկուսացված եզակի կետերին, մնացքների տեսությանն ու նրանց կիրառություններին:
Դասընթացի խնդիրները.
1. ՈՒսանողներին ծանոթացնել կոմպլեքս թվերին, նրանց տեսքերին և նրանց հետ կատարվող գործողություններին.
2. Ծանոթացնել անալիտիկ և հարմոնիկ ֆունկցիաներին և նրանց հատկություններին.
3. Ծանոթացնել կոմպլեքս փոփոխականի ֆունկցիայի ինտեգրալին, Կոշիի ինտեգրալային թեորեմին ու ինտեգրալային բանաձևին.
4. Ծանոթացնել Լորանի շարքին և մեկուսացված եզակի կետերին:
5. Դասակարգել մեկուսացված եզակի կետերը:
6. Ծանոթացնել մնացքներին և նրանց կիրառություններին:
Դասընթացի նպատակ
Ուսանողներին ծանոթացնել կոմպլեքս անալիզի հիմնական գաղափարներին՝ անալիտիկ և հարմոնիկ ֆունկցիաներին և նրանց հատկություններին, Կոշիի ինտեգրալային բանաձևին և ինտեգրալային թեորեմին, Լորանի շարքին և մեկուսացված եզակի կետերին, մնացքների տեսությանն ու նրանց կիրառություններին:
Դասընթացի խնդիրները.
1. ՈՒսանողներին ծանոթացնել կոմպլեքս թվերին, նրանց տեսքերին և նրանց հետ կատարվող գործողություններին.
2. Ծանոթացնել անալիտիկ և հարմոնիկ ֆունկցիաներին և նրանց հատկություններին.
3. Ծանոթացնել կոմպլեքս փոփոխականի ֆունկցիայի ինտեգրալին, Կոշիի ինտեգրալային թեորեմին ու ինտեգրալային բանաձևին.
4. Ծանոթացնել Լորանի շարքին և մեկուսացված եզակի կետերին:
5. Դասակարգել մեկուսացված եզակի կետերը:
6. Ծանոթացնել մնացքներին և նրանց կիրառություններին:
Կրթական վերջնարդյունքներ
ա. մասնագիտական գիտելիք և իմացություն
1. Սահմանելու կոմպլեքս թիվ ու կոմպլեքս փոփոխականի ֆունկցիա, անալիտիկ և հարմոնիկ ֆունկցիաներ, ներկայացնելու նրանց հատկությունները, կոմպլեքս փոփոխականի ֆունկցիայի ինտեգրալը, Կոշիի իտեգրալային թեորեմն ու ինտեգրալային բանաձևը.
2. Սահմանելու Լորանի շարք, բնութագրելու մեկուսացված եզակի կետերը, ներկայացնելու մնացքների թեորեմն ու նրա կիրառությունները։
բ. գործնական մասնագիտական կարողություններ
1. Կատարելու գործողություններ կոմպլեքս թվերի, անալիտիկ և հարմոնիկ ֆունկցիաների հետ, հաշվելու կոմպլեքս փոփոխականի ֆունկցիաների արժեքները։
2. Ստանալու կոմպլեքս փոփոխականի ֆունկցիայի ինտեգրալը կիրառելով Կոշիի ինտեգրալային թեորեմը և մնացքների տեսության տարրերը:
3. Վերլուծելու կոմպլեքս փոփոխականի ֆունկցիան Լորանի շարքի և դասակարգելու մեկուսացված եզակի կետերը։
գ. ընդհանրական/փոխանցելի կարողություններ
1. Աշխատելու թիմում։
2. Հստակ ներկայացնելու միտքը։
3. Օգտվելու տարբեր աղբյուրներից, վերլուծելու և դասակարգելու ստացած տեղեկատվությունը։
4. Պահպանելու մասնագիտական էթիկայի նորմերը։
Դասավանդման և ուսումնառության ձևերն ու մեթոդները
1. Դասախոսություն
2. գործնական
3. քննարկում
4. զեկուցում
5. ռեֆերատ։
Գնահատման մեթոդները ու չափանիշները
Եզրափակիչ գնահատումով դասընթաց, առավելագույնը 20 միավոր (4+4+8+4)։
Ընթացիկ քննություններ.
Նախատեսված 2 ընթացիկ քննությունները գրավոր են, յուրաքանչյուրը՝ 4 միավոր առավելագույն արժեքով: Տոմսը պարունակում է 8 հարց /յուրաքանչյուրը 0,5/:Միավորների քայլը 0.25 է:
Ընթացիկ ստուգումներ՝ առավելագույնը 2 միավոր, կիսամյակի ընթացքում իրականացրած 2 ստուգողական աշխատանքներից ձեռք բերումների համար։ Միավորների քայլը 0,25 է:
Մասնակցությունը ՝ առավելագույնը 2 միավոր:
Եզրափակիչ քննության. տոմսը պարունակում է 4 հարց՝ երկու տեսական հարց, յուրաքանչյուրը 2 միավոր, երկու խնդիր, յուրաքանչյուրը 2 միավոր: Գնահատման քայլը 0.25 է:
Դասընթացի հիմնական բաժիններ
Թեմա 1. Կոմպլեքս թվեր և գործողություններ դրանց հետ:Թեմա 2.Կոմպլեքս փոփոխականի ֆունկցիաներ, անընդհատություն, ածանցյալ, ինտեգրալ:Թեմա 3. Անալիտիկ ֆոինկցիաների տեսության հիմնական թեորեմը. Կոշիի ինտեգրալային թեորեը: Թեմա 4. Կոշիի ինտեգրալային բանաձև: Թեմա 5. Կոշիի տիպի ինտեգրալ: Թեմա 6. Անալիտիկ ֆոինկցիաների հաջորդականություններ և շարքեր: Թեմա 7. Լորանի շարք: Թեմա 8. Մնացքների տեսությունը:
Հիմնական գրականության ցանկ.
  • Զաքարյան Մ., Կոմպլեքս անալիզ, Եր., 2016:
  • Привалов И., Введение в теорию функций комплексной переменной, Наука, Москва, 1971.
  • Бицадзе А., Основы теории аналитических функций комплексной переменной, Наука, Москва, 1987.
©2025 Բոլոր իրավունքները պաշտպանված են: